HOW DOES A PASSIVE INFRARED SENSOR (PIR) WORK?
A PIR is a passive device. It detects the movement of an infrared radiation source within its range and field of view.
Infrared (IR) radiation is emitted by all warm or hot bodies, including birds, mammals and any heat source such as an engine or motor that has been running recently. The warmer they are the more IR they emit. Provided that there is a difference between the IR being emitted by the moving body and the background level of IR then the sensor will be able to detect it.
A PIR for lighting control applications consists of three main components:
Fresnel lens: This receives infrared radiation from its field of view and focuses it onto the sensor itself. Because the Fresnel lens is divided into segments the sensor behind the lens receives multiple separate beams of IR radiation, each one corresponding to a separate segment of the field of view. A Fresnel lens as would typically be used on a passive infrared occupancy (motion) sensor. The design of the Fresnel lens is critical to the range and sensitivity of the sensor and will vary according to its intended application.
Fresnel Lens Sensing Applications
The purpose of the Fresnel lens in an occupancy sensing application is to divide the sensor’s field of view into separate segments so that differential levels of IR radiation can be detected moving across it, indicating the presence of a moving object.
Pyroelectric sensor (often known in electronics as a “pyro”): This is an analogue device comprised of two detector elements. One element is wired so that when it receives IR it emits a high voltage while the other half, when it receives IR emits a low voltage. The more IR each element receives the further the voltage deviates (up or down) from zero. If they both receive the same amount, then the voltages cancel each other out. Any movement of an IR emitting body in the field of view will therefore cause the output voltage of the pyro to fluctuate – indicating movement. The stronger the IR input (because the body detected is either very close or very hot) the more the output voltage will fluctuate. Square Shaped Sensor: Beneath the square-shaped area on the top of the sensor are two separate elements, wired to output high and low voltages. Some lighting control PIRs will use more than one pyro in order to achieve higher levels of sensitivity.
Electronic circuit and software: The circuitry and software behind the pyro process its output to determine if the IR changes observed indicate a moving person or not and therefore if the lights should be switched on or not. By the correct design and selection of the software, pyro, and Fresnel lens the same basic PIR technology can be adapted to suit many different applications.
HOW DOES A MICRO-WAVE SENSOR (MW) WORK?
A micro-wave sensor is an active device. It emits very low-level pulses of electro-magnetic radiation which hit, and bounce back from objects within its range. The sensor receives and, using the Doppler effect, analyses the incoming radiation to determine if there are any moving objects in the field of view.
What is the Doppler effect?
Most of us experience the Doppler effect every day with respect to sounds we hear. The Doppler principle is that the apparent frequency of a wave (such as sound) depends on the speed of the source (which is making the sound) relative to the speed of the receiver (which is hearing the sound).
Doppler effect principle
The Doppler principle can be applied to any wave, not just sound waves. For occupancy (motion) sensing in lighting control micro-waves are convenient because they are low-energy and for humans they are invisible and inaudible. In occupancy sensing applications any deviation between the frequency of the radiation the sensor emitted and the frequency it received back will indicate movement in the detection zone. If the received frequency is higher than the object must be moving towards the sensor, if it is lower than the object must be moving away.
PASSIVE INFRARED (PIR) v MICROWAVE (MW) FOR OCCUPANCY SENSING. WHICH IS BEST?
Both technologies have their strengths and weaknesses and are therefore better suited to different applications in lighting control.
Seeing round corners or line-of-sight only?
A PIR only operates in line-of-site. Microwaves, on the other hand, can bounce round a corner and back again. It can therefore be beneficial to use microwave sensors on, for example, a stairwell. In this instance one sensor at the top and one at the bottom might be sufficient to switch all the lights on, even if someone entered at an intermediate level.
Operating through walls and windows
PIR technology will not detect movement on the other side of even the thinnest wall or window, whereas a microwave can (subject to its power and sensitivity). Carefully consider the technology and siting of any sensors you use in offices with nearby corridors.
Service Request